Chebyshev expansions and rational approximations
نویسندگان
چکیده
منابع مشابه
Numerical Approximations Using Chebyshev Polynomial Expansions
The aim of this work is to find numerical solutions for differential equations by expanding the unknown function in terms of Chebyshev polynomials and solving a system of linear equations directly for the values of the function at the extrema (or zeros) of the Chebyshev polynomial of order N . The solutions are exact at these points, apart from round-off computer errors and the convergence of o...
متن کاملNumerical approximations using Chebyshev polynomial expansions: El-gendi’s method revisited
Abstract We present numerical solutions for differential equations by expanding the unknown function in terms of Chebyshev polynomials and solving a system of linear equations directly for the values of the function at the extrema (or zeros) of the Chebyshev polynomial of order N (El-gendi’s method). The solutions are exact at these points, apart from round-off computer errors and the convergen...
متن کاملRational Chebyshev Approximations for Fermi-Dirac Integrals of Orders
Rational Chebyshev approximations are given for the complete Fermi-Dirac integrals of orders — \, \ and f. Maximal relative errors vary with the function and interval considered, but generally range down to 10~9 or less.
متن کاملGeneralized Rational Chebyshev Approximation
In this paper, a generalized rational Chebyshev approximation problem is considered. The problem is this: To minimize the maximum absolute value of the "criterion function" of the error. By imposing a rather natural restriction on the criterion function, the problem is solved completely; the existence, the uniqueness and the characterization of the best approximation are clarified and interesti...
متن کاملNumerical approximations for population growth model by Rational Chebyshev and Hermite Functions collocation approach: A comparison
This paper aims to compare rational Chebyshev (RC) and Hermite functions (HF) collocation approach to solve the Volterra’s model for population growth of a species within a closed system. This model is a nonlinear integro-differential equation where the integral term represents the effect of toxin. This approach is based on orthogonal functions which will be defined. The collocation method redu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1976
ISSN: 0377-0427
DOI: 10.1016/0771-050x(76)90013-9